Heat Exchanger Exergetic Lifecycle Cost Optimization using Evolutionary Algorithms
نویسنده
چکیده
Considering lifecycle cost analysis during the design phase of thermal systems gives the design effort more worth. Furthermore thermodynamic exergetic optimization is a proven useful method for determining the most lifecycle cost optimal design of thermal systems for given thermodynamic constraints. The most thermodynamic efficient heat exchanger design basing on first law analysis may not be the better method for economic lifecycle cost estimation of a heat exchanger. Nevertheless, including the second law (exergetic) analysis in the lifecycle cost optimization technique will definitely result in a thermodynamic efficient and heat exchanger design. In this study lifecycle cost optimization procedure for shell and tube heat exchanger has developed. The total cost includes capital and operating costs, which are the components of objective function. The study searches for the optimum cost if they exist, by doing the optimum first the parametric study based on both sizing and rating problems. The study also searches for the optimum (minimum cost) using the evolutionary method of optimization, and results are confirmed using genetic optimization method, direct search method and simplex method. Evolutionary Optimization has recently experienced a remarkable growth. New concepts, methods and applications are being continually proposed and exploited to provide efficient tools for solving a variety of optimization problems. These techniques include Genetic Algorithms, Genetic Programming, Evolutionary Programming and Evolution Strategies among others, all of which have inspired by restricted models of natural evolution. Cost of the heat exchanger has been optimized basing on different constraints, like length, shell diameter, tube pitch etc. Key-Words: heat exchanger, operating cost, optimization, entropy generation, exergy destruction, thermodynamics, evolutionary method,
منابع مشابه
Thermoeconomic Lifecycle Cost Optimization of an Annular Fin Heat Exchanger
In this paper the design of annular fin heat exchanger based on economic optimization has been carried out. The optimization process targeted minimizing the lifecycle cost of annular fin heat exchanger that has the same frontal area, effectiveness and heat load of available practical standard geometry exchangers. The lifecycle cost includes both capital and operating costs. Beside the pumping c...
متن کاملOptimization of the total annual cost in a shell and tube heat exchanger by Ant colony optimization technique
This paper examines the total annual cost from economic view heat exchangers based on ant colony optimization algorithm and compared the using optimization algorithm in the design of economic optimization of shell and tube heat exchangers. A shell and tube heat exchanger optimization design approach is expanded based on the total annual cost measured that divided to area of surface and power co...
متن کاملMulti-objective Optimization of a Solar Driven Combined Power and Refrigeration System Using Two Evolutionary Algorithms Based on Exergoeconomic Concept
This paper deals with a multi-objective optimization of a novel micro solar driven combined power and ejector refrigeration system (CPER). The system combines an organic Rankine cycle (ORC) with an ejector refrigeration cycle to generate electricity and cold capacity simultaneously. Major thermodynamic parameters, namely turbine inlet temperature, turbine inlet pressure, turbine back pressure, ...
متن کاملSaving Energy by Exergetic Analysis of MTP Process Refrigeration System
The exergetic analysis is a tool that has been used successfully in many studies aiming a more rational energy consumption to reduce the cost of processes. With this analysis, it is possible to perform an evaluation of the overall process, locating and quantifying the degradation of exergy. This paper applies exergy approach for analyzing the heat exchanger network design and refrigeration of M...
متن کاملThermal-Economic Optimization of Shell and Tube Heat Exchanger by using a new Multi-Objective optimization method
Many studies are performed by researchers about Shell and Tube Heat Exchanger but the Multi-Objective Big Bang-Big Crunch algorithm (MOBBA) technique has never been used in such studies. This paper presents application of Thermal-Economic Multi-Objective Optimization of Shell and Tube Heat Exchanger Using MOBBA. For optimal design of a shell and tube heat exchanger, it was first thermally model...
متن کامل